求右边图形的周长(巧求图形的周长)
求右边图形的周长文章列表:
巧求图形的周长
【例题】求图中所示图形(每一个小正方形的顶点恰在另一个正方形的中心,且边长相互平行)的周长。
分析:我们可以先把竖向线段平移。平移见下图:
图中是先把左边的横线线段平移,由此我们可以算出左边的横向线段:
长:2 1×7=9(厘米)
分析:我们拿左边最后一个图形长度的2厘米加上其它图形的长度。我们可以发现,其它图形的长度都是左边最后一个图形的1/2,则我们可以拿去左边最后一个图形的二厘米除以二就等于一厘米,这二厘米是算出左边每一个正方形的边长(除了左边最下面的图形)。竖向线段右边的和左边的是一样的。右边的也是拿去2 1×7,得数等于9。
所以竖向线段的总共长度是9 9=18(厘米)
接下来我们来算横向图形的周长
同样也是先平移(见图片)
平移之后我们可以发现横向线段的长度和竖向线段的的长度是相等的,算左边和算右边的算式也是2 1×7=9(厘米)左边和右边都是9厘米,则算式就是9 9=18(厘米)
最后我们来算这个图形一共的周长
则是18 18=36(厘米)
答:这个图形的周长一共是36厘米。
好了,今天的学习就到这里了,如果大家喜欢我的文章,请大家点赞、转发,今天的题目大家学会了吗?我们下期再见!
注:如果大家有什么疑问,请在今日头条或者西瓜视频的私聊里边问,我会帮助你解决的。@王老师42
一道高中几何题-求三角形的最小周长
一道高中几何题-求三角形的最小周长
在图中AB=10, BC=14, AC=16, M是BC的中点, 通过M点可以画很多线与AB交于P,与AC交于Q, 证明并求出三角形APQ的最小周长。
解:我们在一道题中曾经证明过下图中的问题,证得过三角形AVW的周长之和切线长有关。详见一道初中几何题,求证三角形的周长为定值
本题若果M点做个圆并且与AB和AC两条直线相切,这个圆是存在的。
若从M点做圆的切线,则形成的三角形APQ的周长为最小。如图所示的AVW,下面分析和证明这个结论。
我们证明三角形AVW的第三个边经过M就是最小周长的三角形,从上面的结论中这个周长等于AY AZ。
若从M做其它三角形,由于经过M只有一条切线,所以其它线一定与圆有另一交点,
然而这条线可以由另一个圆同时与AB和AC相切以及这条线相切,这条切线与AB和AC相交于Y’和Z’。但PMQ将最初的圆切割交于两点, 为了相切,这个圆必须要向右侧移动,因此两个切点Y’, Z’也要向外侧移动,说明周长在增大(因为根据前面的引理,周长只与切线有关),因此证明了M是切点时的三角形形APQ有最小周长。
接下来就是如何解三角形的问题。
我们现在确定三角形AVW的周长, 注意到切线AZ的长度是可以求出的,因为三角形AVW的周长=AY AZ, 但AY=AZ, 所以周长就是2AZ。
首先求角A的大小, 利用余弦定理:
接着是确定圆心和半径,这样利用解析几何确定各点的坐标是容易求得切线的长度的。
如图标出A, B, C三点坐标, 由于M是BC的中点, 可以求出M的的坐标。
利用中点公式, M点的坐标为:
即为:
设圆的半径为r, 圆心很容易求出,
则圆的方程为,
又因为切线AZ的长度为√3r, 所以三角形的最小周长为:
小学数学1—6年级口决定义归类,必背的数学概念!建议收藏
更多资料请关注微信公众号:小学资源园地
1、什么是图形的周长?
围成一个图形所有边长的总和就是这个图形的周长。
2、什么是面积?
物体的表面或围成的平面图形的大小叫做他们的面积。
3、加法各部分的关系:
一个加数=和-另一个加数
4、减法各部分的关系:
减数=被减数-差 被减数=减数 差
5、乘法各部分之间的关系:
一个因数=积÷另一个因数
6、除法各部分之间的关系:
除数=被除数÷商 被除数=商×除数
7、角
(1)什么是角?
从一点引出两条射线所组成的图形叫做角。
(2)什么是角的顶点?
围成角的端点叫顶点。
(3)什么是角的边?
围成角的射线叫角的边。
(4)什么是直角?
度数为90°的角是直角。
(5)什么是平角?
角的两条边成一条直线,这样的角叫平角。
(6)什么是锐角?
小于90°的角是锐角。
(7)什么是钝角?
大于90°而小于180°的角是钝角。
(8)什么是周角?
一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°.
8、垂直问题
(1)什么是互相垂直?什么是垂线?什么是垂足?
两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
(2)什么是点到直线的距离?
从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。
9、三角形
(1)什么是三角形?
有三条线段围成的图形叫三角形。
(2)什么是三角形的边?
围成三角形的每条线段叫三角形的边。
(3)什么是三角形的顶点?
每两条线段的交点叫三角形的顶点。
(4)什么是锐角三角形?
三个角都是锐角的三角形叫锐角三角形。
(5)什么是直角三角形?
有一个角是直角的三角形叫直角三角形。
(6)什么是钝角三角形?
有一个角是钝角的三角形叫钝角三角形。
(7)什么是等腰三角形?
两条边相等的三角形叫等腰三角形。
(8)什么是等腰三角形的腰?
有等腰三角形里,相等的两个边叫做等腰三角形的腰。
(9)什么是等腰三角形的顶点?
两腰的交点叫做等腰三角形的顶点。
(10)什么是等腰三角形的底?
在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。
(11)什么是等腰三角形的底角?
底边上两个相等的角叫等腰三角形的底角。
(12)什么是等边三角形?
三条边都相等的三角形叫等边三角形,也叫正三角形。
(13)什么是三角形的高?什么叫三角形的底?
从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。
(14)三角形的内角和是多少度?
三角形内角和是180°.
10、四边形
(1)什么是四边形?
有四条线段围成的图形叫四边形。
(2)什么是平等四边形?
两组对边分别平行的四边形叫做平行四边形。
(3)什么是平行四边形的高?
从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。
(4)什么是梯形?
只有一组对边平行的四边形叫做梯形。
(5)什么是梯形的底?
在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。
(6)什么是梯形的腰?
在梯形里,不平等的一组对边叫梯形的腰。
(7)什么是梯形的高?
从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
(8)什么是等腰梯形?
两腰相等的梯形叫做等腰梯形。
11、什么是自然数?
用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。
12、什么是四舍五入法?
求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。
13、加法意义和运算定律
(1)什么是加法?
把两个数合并成一个数的运算叫加法。
(2)什么是加数?
相加的两个数叫加数。
(3)什么是和?
加数相加的结果叫和。
(4)什么是加法交换律?
两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。
14、什么是减法?
已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。
15、什么是被减数?什么是减数?什么叫差?
在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。
16、加法各部分间的关系:
和=加数 加数 加数=和-另一加数
17、减法各部分间的关系:
差=被减数-减数 减数=被减数-差 被减数=减数 差
18、乘法
(1)什么是乘法?
求几个相同加数的和的简便运算叫乘法。
(2)什么是因数?
相乘的两个数叫因数。
(3)什么是积?
因数相乘所得的数叫积。
(4)什么是乘法交换律?
两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。
(5)什么是乘法结合律?
三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。
19、除法
(1)什么是除法?
已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。
(2)什么是被除数?
在除法中,已知的积叫被除数。
(3)什么是除数?
在除法中,已知的一个因数叫除数。
(4)什么是商?
在除法中,求出的未知因数叫商。
20、乘法各部分的关系:
积=因数×因数 一个因数=积÷另一个因数
21、除法
(1)除法各部分间的关系:
商=被除数÷除数 除数=被除数÷商
(2)有余数的除法各部分间的关系:
被除数=商×除数 余数
22、什么是名数?
通常量得的数和单位名称合起来的数叫名数。
23、什么是单名数?
只带有一个单位名称的数叫单名数。
24、什么是复名数?
有两个或两个以上单位名称的数叫复名数。
25、什么是小数?
仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数。
26、什么是小数的基本性质?
小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。
27、什么是有限小数?
小数部分的位数是有限的小数叫有限小数。
28、什么是无限小数?
小数部分的位数是无限的小数叫无限小数。
29、什么是循环节?
一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。
30、什么是纯循环小数?
循环节从小数第一位开始的叫纯循环小数。
31、什么是混循环小数?
循环节不是从小数部分第一位开始的叫做混循环小数。
32、什么是四则运算?
我们把学过的加、减、乘、除四种运算统称四则运算。
33、什么是方程?
含有未知数的等式叫方程。
34、什么是解方程?
求方程解的过程叫解方程。
35、什么是倍数?什么叫约数?
如果a能被b整除,a就是b的倍数,b就叫a的约数(或a的因数)。
36、什么样的数能被2整除?
个位上是0、2、4、6、8的数都能被2整除。
37、什么是偶数?
能被2整除的数叫偶数。
38、什么是奇数?
不能被2整除的数叫奇数。
39、什么样的数能被5整除?
个位上是0或5的数能被5整除。
40、什么样的数能被3整除?
一个数的各位上的和能被3整除,这个数就能被3整除。
41、什么是质数(或素数)?
一个数如果只有1和它本身两个约数,这样的数叫质数。
42、什么是合数?
一个数除了1和它本身还有别的约数,这样的数叫合数。
43、什么是质因数?
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。
44、什么是分解质因数?
把一个合数用质因数相乘的形式表示出来叫做分解质因数。
45、什么是公约数?什么叫最大公约数?
几个数公有的约数叫公约数。其中最大的一个叫最大公约数。
46、什么是互质数?
公约数只有1的两个数叫互质数。
47、什么是公倍数?什么是最小公倍数?
几个数公有的倍数叫这几个数的公倍数。其中最小的一个叫这几个数的最小公倍数。
48、分数
(1)什么是分数?
把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。
(2)什么是分数线?
在分数里中间的横线叫分数线。
(3)什么是分母?
分数线下面的部分叫分母。
(4)什么是分子?
分数线上面的部分叫分子。
(5)什么是分数单位?
把单位“1”平均分成若干份,表示其中的一份叫分数单位。
49、怎么比较分数大小?
(1)分母相同的两个分数,分子大的分数比较大。
(2)分子相同的两个分数,分母小的分子比较大。
(3)什么是真分数?
分子比分母小的分数叫真分数。
(4)什么是假分数?
分子比分母大或者分子和分母相等的分数叫假分数。
(5)什么是带分数?
由整分数和真分数合成的数通常叫带分数。
(6)什么是分数的基本性质?
分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。
(7)什么是约分?
把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。
(8)什么是最简分数?
分子、分母是互质数的分数叫最简分数。
50、比
(1)什么是比?
两个数相除又叫两个数的比。
(2)什么是比的前项?
比号前面的数叫比的前项。
(3)什么是比的后项?
比号后面的数叫比的后项。
(4)什么是比值?
比的前项除以后项所得的商叫比值。
(5)什么是比的基本性质?
比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。
51、长方体和正方体
(1)什么是棱?
两个面相交的边叫棱。
(2)什么是顶点?
三条棱相交的点叫顶点。
(3)什么是长方体的长、宽、高?
相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。
(4)什么是正方体(立方体)?
长宽高都相等的长方体叫正方体(或立方体)。
(5)什么是长方体的表面积?
长方体六个面的总面积叫长方体的表面积。
(6)什么是物体体积?
物体所占空间的大小叫做物体的体积。
52、圆
(1)什么是圆心?
圆中心的点叫圆心。
(2)什么是半径?
连接圆心和圆上任意一点的线段叫半径。
(3)什么是直径?
通过圆心、并且两端都在圆上的线段叫直径。
(4)什么是圆的周长?
围成圆的曲线叫圆的周长。
(5)什么是圆周率?
我们把圆的周长和直径的比值叫圆周率。
(6)什么是圆的面积?
圆所围平面的大小叫圆的面积。
(7)什么是扇形?
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。
(8)什么是弧?
在圆上两点之间的部分叫弧。
(9)什么是圆心角?
顶点在圆心上的角叫圆心角。
(10)什么是对称图形?
如果一个图形沿着一条直线对折,两侧图形能够完全重合,这样的图形就是对称图形。
53、什么是百分数?
表示一个数是另一个数百分之几的数叫百分数,百分数也叫百分率或百分比。
54、比例
(1)什么是比例?
表示两个比相等的式子叫比例。
(2)什么是比例的项?
组成比例的四个数叫比例的项。
(3)什么是比例外项?
两端的两项叫比例外项。
(4)什么是比例内项?
中间的两项叫比例内项。
(5)什么是比例的基本性质?
在比例中两个外项的积等于两个内项的积。
(6)什么是解比例?
求比例中的未知项叫解比例。
(7)什么是正比例关系?
两种相关的量,一种变化,另一种量也变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量叫正比例的量,它们的关系叫正比例关系。
(8)什么是反比例关系?
两种相关的量,一种变化,另一种也随着变化,如果这两种量中相对应的积一定,这两种量叫反比例的量,它们的关系成反比例关系。
55、圆柱
(1)什么是圆柱底面?
圆柱的上下两个面叫圆柱的底面。
(2)什么是圆柱的侧面?
圆柱的曲面叫圆柱的侧面。
(3)什么是圆柱的高?
圆柱两个底面的距离叫圆柱的高。
五年级数学重要知识点口诀和典型应用题,学会了当考神
小数除法法则
小数除法高位起,看着除数找规律。
除数是整直接除,除到哪位商哪位。
不够商一零占位,商被除数点对齐。
小数除法变整数,被除数点同位移。
右边数位若不够,应该用零来补齐。
分数加减法法则
分数加减很简单,统一单位是关键。
同分母分数相加减,分子加减分母不变。
异分母分数相加减,先通分来后计算。
分数乘法法则
分数乘法更简单,分子、分母分别算。
分子相乘作分子,分母相乘作分母。
分子、分母不互质,先约分来后计算。
分数除法法则
分数除法最简便,转换乘法来计算。
除号变成乘号后,再乘倒数商出来。
质数、合数
分清质数与合数,关键就是看因数。
1的因数只一个,不是质数也非合数;
如果因数只两个,肯定无疑是质数;
3个因数或更多,那就一定是合数。
分解质因数
合数分解质因数,最小质数去整除,
得出的商是质数,除数乘商来写出;
得出的商是合数,照此方法继续除,
直到得出质数商,再用连乘表示出。
求最大公因数
要求最大公因数,就用公因数去除,
直到商为互质数,除数连乘就得出;
如果两数相比较,小是大数的因数,
不必再用短除式,小数就是公因数。
求最小公倍数
要求最小公倍数,公有质因数去除,
直到商为互质数,除数乘商就得出;
两数若是互质数,乘积即为公倍数;
大是小数的倍数,不必去求已清楚。
100以内的质数
二三五七一十一,十三十九和十七,
二三二九三十一,三七四三和四一,
四七五三和五九,六一六七手拉手,
七一七三和七九,还有八三和八九,
左看右看没对齐,原来还差九十七。
列方程解应用题
列方程解应用题,抓住关键去分析。
已知条件换成数,未知条件换字母,
找齐相关代数式,连接起来读一读。
百分数和小数互化
小数化成百分数,小数点右移要记住,
移动两位并做到:在后面添上百分号。
百分数要化小数,小数点左移要记住,
移动两位并做到:一定要去掉百分号。
百分数和分数互化
分数要化百分数,先把分数化小数;
除不尽时别发愁,三位小数可保留。
化成小数要记住:小数再化百分数。
百分数要化分数,把它改写成分数,
能约分的要约分,约到最简即完成。
分数(百分数)乘、除法一般应用题
判断分数应用题,关键确定单位“1”。
只要找出标准量,比较量再去对比。
要求某数几分几,乘法计算最实际,
若知某数几分几,要求某数除法题。
分数乘除能辨清,百分数是同一理。
周长
正方形周长最易,边长乘4计算完;
长方形耍手腕儿,长宽之和再乘2;
圆的周长有点怪,量出直径再乘π。
面积
面积计算很容易,弄清道理是前提:
以长方形为基础,长宽相乘即面积;
邻边相等正方形,边长相乘就可以;
平行四边形一样,高底相乘求面积;
梯形上下底平均,和高相乘同一理;
上底为0三角形,它和梯形是同类;
圆的面积看仔细,半径平方乘周率。
圆的画法
确定中心定半径,圆规尖脚固圆心,
另一只脚转一圈,一个圆圈即画成。
体积
计算体积并不难,弄清道理是关键:
以长方体为基础,长宽高乘即得出;
三者相等正方体,棱长立方为体积;
圆柱底面乘以高,三分之一圆锥体;
容积要从里面量,计算方法同体积。
百分数应用题
解应用题先别慌,反复读题头一桩。
条件、问题关键句,一字不漏正反想。
线段图,是拐杖。
用方程,切莫忘,化难为易它最强。
分数题,单位“1”,量率对应细分析。
三类九种基本题,你要牢牢记心里。
工程题、行程题,相互沟通正反比。
假设法、不变量,单位“1”要统一。
算完题,要检验,符合题意再答题。
比较应用题
计划实际比较应用题,细分析不用急。
数量关系很重要,前后联系很微妙。
先把关系写上边,解题思路它领先。
计划实际在左面,上下对比一条线。
具体数量要体现,不变数量是关键。
按量填数看得准,最后再把问题填。
根据等式列方程,算术方法也简单。
试商
两位数除多位数,四舍五入试试商。
四舍试商容易大,逐步减1往小调。
五入试商容易小,逐步加1往大调。
多位数除法别作难,弄清算理最关键。
个位数是1,2,3,四舍方法来判断。
个位数是4,5,6,近五口算最方便。
个位数是7,8,9,五入方法来试验。
四舍五入试商妙,认真计算不出错。
比例尺
求比例尺,很容易。
先把单位来统一,写出图距与实际距离比。
再根据基本性质去约分,比的前项化为1。
小数简便计算
小数简算并不难,认真审题不怕难;
认真分析再计算,运算规律莫记乱;
交换、分配和结合,算完还要再看看;
确保正确不失误,胜利闯关来计算。
位置
标示位置有绝招,一组数据把位标;
左数为列右为行,列先行后不能调;
分数乘整数
分数乘整数,计算很简单;
分子乘整数,分母不用变;
计算想简便,约分要在先;
结果要想准,分数化最简。
分数四则混合运算
分数四则混合算,运算顺序记心间;
乘加乘减没括号,加减在后乘在先;
一级二级四则算,二级算在一级前;
有了括号序改变,先算里头后外边;
运算定律仍有用,使用恰当变简单。
圆的认识
圆的认识并不难,心径特征要记全;
圆心一点定位置,大小二径说得算;
直径半径都无数,圆心圆上线段连;
二者关系有条件,同圆等圆说在前;
直径为兄半径弟,兄长弟短二倍牵;
圆规画圆挺容易,半径即在两脚间;
针尖定在圆心位,笔芯一转就画完。
圆的对称性
圆的认识很简单,对称轴多数不完。
同圆直径分两半,绕心旋转形不变。
图形的变换
图形变换并不难,平移旋转对称看;
方向数量中心点,六个要素记心间。
图案设计
图案设计要仔细,旋转对称和平移。
旋转角度细分析,选好对称是大计。
数好格子再平移,精美图案没问题。
比的意义
比的意义很重要,记忆方法有诀窍。
两数相除即为比,除号变点真奇妙。
计算比值有妙招,两项相除解决了。
比与分数和除法,三者关联要记牢。
按比例分配
比的分配很重要,生活应用不可少。
比的意义来解答,对应份数要找好。
分数乘法来帮忙,各量依次求得了。
复式条形统计图
复式条形统计图,名称图例不能少。
纵横两轴先画好,标好单位莫忘了。
注意条宽与间隔,单位长度要合理。
对照数据画直条,不同颜色区分好。
复式折线统计图
复式折线统计图,名称图例不能少。
先画纵横两条轴,标好单位莫忘了。
点点间距要相等,单位长度要找准。
描点连线要顺次,不同折线区分好。
观察物体
观察物体有方法,不同方向去观察。
多个角度画一画,然后动手搭一搭。
平面图形告诉你,立体图形猜一猜。
方块的数量范围,还原之后数一数。
观察范围
观察范围的大小,两个条件来决定。
站得高,望得远;角度小,影越短。
点与角度都重要,相互制约好朋友。
生活中的数
数据世界真奇妙,整体部分互转化。
熟悉事物来描述,收集数据方法多。
询问他人查资料,课外调查不能少。
分数的大小比较
分数大小的比较,分母相同看分子,
分子大的比较大;分子相同看分母,
分母小的反而大。
假分数化带分数或整数
假分数化带分数,分子分母去相除。
商为整数余分子,分母不变要记住。
如果两数能整除,所得商就是整数。
带分数与假分数的互化
带分数化假分数,原分母仍作分母,
分母整数相乘积,和原分子加一处,
来作分子要记住。
一般应用题解答步骤
应用题解并不难,弄清题意是关键。
先从已知条件想,再往所求问题看。
也可逆向去思考,综合分析作判断。
画图可帮理思路,以此推导不出偏。
先算后算有次序,列出算式细心算。
算出结果要检验,最后莫忘写答案。
小数乘法
小数乘法不算难,关键点好小数点。
因数小数位数和,等同积中小数位。
积中位数如不够,用0补足再点点。
因数如果不为0,还有奥秘在其中。
一个因数小于1,另一因数大于积。
一个因数大于1,另一因数小于积。
典型应用题
具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
(1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。
差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
数量关系式:(大数-小数)÷2=小数应得数 最大数与各数之差的和÷总份数=最大数应给数 最大数与个数之差的和÷总份数=最小数应得数。
例1.一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。
分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为 ,汽车从乙地到甲地速度为 60 千米 ,所用的时间是 ,汽车共行的时间为 = , 汽车的平均速度为 2 ÷ =75 (千米)
(2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。
根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。
一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”
两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”
正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。
数量关系式:单一量×份数=总数量(正归一)
总数量÷单一量=份数(反归一)
例2. 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天?
分析:必须先求出平均每天织布多少米,就是单一量。693 0 ÷( 477 4 ÷ 31 ) =45 (天)
(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。
特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。
数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量
单位数量×单位个数÷另一个单位数量= 另一个单位数量。
例3. 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?
分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。80 0 × 6 ÷4=1200 (米)
(4) 和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。
解题规律:(和+差)÷2 = 大数 大数-差=小数
(和-差)÷2=小数 和-小数= 大数
例4. 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?
分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41 46=87 (人),甲班为 9 4 - 87=7 (人)
(5)和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。
解题规律:和÷倍数和=标准数 标准数×倍数=另一个数
例5.汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?
分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5 1 )倍对应,总车辆数应( 115-7 )辆 。
列式为( 115-7 )÷( 5 1 ) =18 (辆), 18 × 5 7=97 (辆)
(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。
解题规律:两个数的差÷(倍数-1 )= 标准数 标准数×倍数=另一个数。
例6. 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米?各减去多少米?
分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。
(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
解题关键及规律:
同时同地相背而行:路程=速度和×时间。
同时相向而行:相遇时间=速度和×时间
同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。
同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
例7. 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?
分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。
已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ÷ ( 16-9 ) =4 (小时)
(8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。
船速:船在静水中航行的速度。
水速:水流动的速度。
顺水速度:船顺流航行的速度。
逆水速度:船逆流航行的速度。
顺速=船速+水速
逆速=船速-水速
解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。解题时要以水流为线索。
解题规律:船行速度=(顺水速度 逆流速度)÷2
流水速度=(顺流速度逆流速度)÷2
路程=顺流速度× 顺流航行所需时间
路程=逆流速度×逆流航行所需时间
例8. 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?
分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。
列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。
(9) 还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。
解题关键:要弄清每一步变化与未知数的关系。
解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。
根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。
解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。
例9. 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?
分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2 3=43 (人)
一班原有人数列式为 168 ÷ 4-6 2=38 (人);二班原有人数列式为 168 ÷ 4-6 6=42 (人) 三班原有人数列式为 168 ÷ 4-3 6=45 (人)。
(10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。
解题规律:沿线段植树
棵树=段数 1 棵树=总路程÷株距 1
株距=总路程÷(棵树-1) 总路程=株距×(棵树-1)
沿周长植树
棵树=总路程÷株距
株距=总路程÷棵树
总路程=株距×棵树
例10. 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。
分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)
(11 )盈亏问题:是在等分除法的基础上发展起来的。他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。
解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。
解题规律:总差额÷每人差额=人数
总差额的求法可以分为以下四种情况:
第一次多余,第二次不足,总差额=多余 不足
第一次正好,第二次多余或不足 ,总差额=多余或不足
第一次多余,第二次也多余,总差额=大多余-小多余
第一次不足,第二次也不足, 总差额= 大不足-小不足
例11. 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。求每人 分得几支?共有多少支色铅笔?
分析:每个同学分到的色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支 , 2 个人多出 20 支,一个人分得 10 支。列式为(25-5 )÷( 12-10 ) =10 (支) 10 × 12 5=125 (支)。
(12)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。
解题关键:年龄问题与和差、和倍、 差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。
例12. 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?
分析:父子的年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为:21( 48-21 )÷( 4-1 ) =12 (年)
(13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
如果假设全是兔子,可以有下面的式子:
鸡的只数=(4×总头数-总腿数)÷2
兔的头数=总头数-鸡的只数
例13. 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?
兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)
鸡的只数 50-35=15 (只)
周易数学、学术论证教学
解剖易原创作品
第九课、太极八卦数码运算验证
研究阴阳太极的本质目的在于利用。利用大自然的运动规律帮助人类了解、解决现实生活中遇到的实际问题。在没有任何数据、证据、依据的环境之下,必须依靠运用虚构、假设、图象模似的手段帮助大脑记忆,从中索取有效成份数据为依据,根据数据作出正解的判断,是学术论证的核心内容。
根据阴阳太极圆的本质定义,所有的易学概念必须跟着太阳转。上9下6,终还是6。66等于36,99等于81,还是等于9。圆的极限量度值是36,圆的极限数值是9。阴阳五行八卦的定义是,9层、7子、63卦。认定为有效数据、依据、证据,继续深层论证教学。
道具制作,首先选用笏丝绕足9圈,大约直径为33,绰成一个圆。假设认定这个圆是9层7子63卦的阴阳太极八卦圆。然后两手捏紧圆圈的对峙点,用力扭成一个8字形的实物体,用绳子将交点固定。由于该物体是人为手工制作,不可能使这两个相切完全相等,唯有运用假设的手段,认定这两个圆相等相切。并且认定该太极八卦圆被这两个圆全等平分。
为了帮助记忆,随便找一个瓶盖在纸面上照样画胡芦,作出两个相切圆图象备用。当然,这两个相切圆可以视作是无穷循环模型,也可以视作太极阴阳二象。于第八课讲述使用的图象原理基本相同,所不同的是9层、7子、63卦。
终上所述,我们已经知道认定这个多股笏丝实物圆是一个太极八卦圆。根据太极八卦推演所得的极限数值是63卦,作为第三圆。两个相等的相切圆是由第三圆平分分解而成,于此同时,也就将《周易》六十三卦中的数码63、被分解平分作两半。用数码表示,分别是3.15,3.15,将这两个相等的数值分别记录到纸面模型图中。
由于这两个相切圆的周长之和,本身就是第三圆的周长,这两个圆的面积也是由第三圆扭曲平分奏合而成。其中一个相切圆是第三圆的半径,两个相切圆则是第三圆的直径。
根据圆形面积的定义是49,即是一个相切圆的平方跟另一个相切圆的乘积,等于第三圆的面积。两个相切圆的相互乘积之和,等于第三圆的周长。
根据近代人类使用割圆术、滚圆术所作出的定义,圆的周长等于直径乘兀。兀即是滚圆术所得的圆周长度跟该圆直径的此率。
这里指的是两个相切圆被第三圆内切,判定三圆之间的连贯关系的直径都是9。即使第三圆的直径是18,实质上也是等于9。故此认定两个相切圆的相互乘积之和等于第三圆的周长。
也就是说,《周易》数学运算是将两个相切圆的其中一个视作直径,将另一个视作是圆周常数3.15作为涉圆推演运算、固定数值使用。当然,在实际运算使用时,应当以圆的真实直径数据为准。例如,第三圆的直径是18跟阴阳定律3.15的乘积,即是第三圆的周长56.7。圆周率3.1416跟18的乘积等于56.6,前者的合数等于9,后者的合数等于8,不等于圆。
为了防止圆周率3.1416与阴阳定律3.15产生混淆,解剖易将《周易》数学剖析所得的结论数据设定为阴阳定律,用丌3.15表示。圆周率与阴阳定律没有任何数理关系。丌是从《周易》六十三卦直接生化而成的精准数据。
打开备用纸质图象,先将左边的3.15视作36是圆的实体面积,36的合数9是圆的直径。右边的3.15保持不变,将它视作圆的参数值,即是近代人类表述的圆周率。然后运用直径9跟阴阳定律3.15相乘,得出左边圆的周长。再将左右数据反转相乘,得出右边圆的周长。这两个相切圆的周长之和,等于第三圆直径18乘以3.15,即是第三圆的周长。以下进入数字实运算验证。
相等相切的两个圆互乘:
9X3.15二28.35、(周长)。
3.15X9二28.35、(周长)。
两圆周长之和:
28.35十28.35二56.7、(第三圆的周长)。
第三圆的直径乘丌:
18X3.15二56.7、(第三圆的周长)。
验证结果相等:56.7二56.7。
终极验证:
将运算所得结果56.7分作前数和后数,前数是56,合数为11,等于2。后数是7。前后合数是,2十7二9,终极结果都等于9。
证明:相等相切的两个圆被第三个圆内切,这两个圆的相互乘积之和,等于第三圆的周长理论成立。
特别注意,《周易》数学属于大乘教法,数字运算法则与现代人类使用的小乘教法运算基本相同,所不同的是将运算所得结果、尾数为0时,先将0销除再确认小数点移位,定作前后数码分界定点。或者说,以后数乘积结果认定分界点,分界点不读小数点。然后以分界点为标准,前数相加作前数,后数相加作后数。倘若出现多位数时,必须分别连续相加,直至单个数为止。
然后将前后数相加,验证结果等于9时,证明该算式准确成立,能构成一个闭合圆。如果验证结果不等于9,证明这道算术题错误,不可能构成一个闭合圆。
由此可以证明,圆周率3.1416跟任何数值的直径、半径的乘积,只能构成一个螺旋体,不能构成一个闭合圆。也就证明圆周率使用3.1416是错误的。
论证二:
前面是将多股笏丝圈直接认定为63卦作为论证依据,很有可能被误解为人为故意设定数据依据强行奏合3.15,蒙骗读者。这里不将多股笏丝圈视作63,将它认定为7子9层进行二次论证。
实物操作原理跟前述相同。只是将9层认定被全等平分,平分所得的数据分别是4.5,4.5,将这两个数码记录到无穷循环的两个相切圆中帮助记忆。然后运用数字运算验证。
数字运算:
4.5x7=3.15。前数是3,后数是6,前后合数等于9。
算式小数点分界办法,凡是有小数点的数,应当视作前后数。乘数与被乘数的积产生两位数时,小数点移位则按前积后积区分确认。
例如:
4、5x7=28、35。前数是10,后数是8,前后合数等于18,最终还是等于9。9又可以变化作3.15,即是36。只是变化的形式状态的不同,结果一样。
那么,这个3.15中15的本质究竟是什么,根据太极八卦坐标,上6下6,左3右3的设定,3为阳数,6为阴数,9是6的倒转数。9与6的和乃天地合数,等于15。3分左右各半,也是等于15。无论分解还是化合终等于6,也就是说,太极运动的坐标无论怎么样变化,上下左右始终保持6的状态不变。
由此证明太极八卦运动始终保持3.6.9不变,保持3.15数值运行不变。实际上15即是河洛中所指的五、十居中运行。3.15正是太极八卦的核心,是推演运算使用永恒不变的常用数据。是3.6.9的化身。
3生万物终归于9。阳数3跟任何数值相乘,结果都不会跳出3.6.9的范围之内。
例如:
一三得三、二三得六、三三得九,结果是3.6.9。三四得十二、三五得十五、三六得十八,结果的合数也是等于3.6.9。三七得二十一、三八得二十四、三九得二十七,结果的合数同样是3.6.9。根据三组数码运算的结果证明,3、15就是3.6.9的化身。
故此判定:3.15是《圆周易》数学中的阴阳定律。
理论证明,论证阴阳定律过程使用的实物、数据、证据,全面展示了一生二,二生三,三生万物的演变事实。证明《易经》是从《圆周易》数学中派生出来的文字译义作品。
从算悟空有七十二变化,二师兄有三十六变化,妖怪能千变万化,始终逃脱不出如来的手掌心。九九八十一,终归作9。
《西游记》曾经描述观音云游东土,寻访贤能之士普度众生时说过,“师傅现今传授的是小乘教法,我有大乘教法三藏,不知师傅愿意取否”。实质上,《西游记》的作者是借助神话叙述了《周易》数学的起源,尽在大乘教法三藏之中。
说到这里,需回顾访问开头的设计。第一课的开头设置,是以无极圆和日夜极限圆化合成象模型,作为论证基础依据。借助图象形态变化思维,逐渐深入论证。
初始对《周易》数学论证的设定,并未完全了解教学内容会牵扯到现代数学教学中、众多的公式和定理。比如说,六十甲子圆,原本以为真的是由六十甲子排列构成。自从破解勾、股、弦的真相之后,发现勾3、股4、弦5指的是半个时辰的边角关系。经论证结果证明,甲子圆必须有六十三个甲子合成,之前的都是表面假象。
从时辰概念着手深入论证,从中剖释出圆的定义,圆的极限量度,圆的终极数值,《周易》是圆周易的简称,等等众多的定义、定理、定律,无需重复尽列。
最重要的是通过搜索论证,挖掘出天地阴阳三合之数,人人合适使用的阴阳定律丌3.15,这组数码或许就是易经中通常所指的,天、地、人、神合适共用的唯一圆整数据。
之所以说,审理任何类形的案件,必须以涉事的实物、客观存在的事实为依据。根据事物的本质属性、变化,排除一切人为水份证据,作出经得起翻复推鼓验证的结论,是证明事实真相的结论。
《周易》数学十大论证即将发布完毕,倘若受教学内容的影响,产生心理不平衡的言词,应当在评论区提出。第十课、圆周率、阴阳定律数字计算捡察,将于8月18日前后发布,敬请留意。(2021年8月3日发布)。